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Abstract. Results of computer simulations to investigate the spin dynamics of a classical ferromagnet
subject to easy-plane anisotropy and a parameterized Zeeman energy are reported. The variability of
the Zeeman term induces a deformable substrate potential in the system. The results show substantial
deviations between the conventional sine-Gordon and deformable sine-Gordon description. Solitary-like
solutions, shock waves, nanopteron waves and a variety of phenomena, including large easy-plane deviations
are also observed. The results display ballistic, diffusive as well as stochastic behaviors. The region of
parameters and limits of applicability of deformability effects induced by parameterization of the Zeeman
energy are examined.

PACS. 62.30.+d Mechanical and elastic waves; vibrations – 63.20.-e Phonons in crystal lattices – 62.60.+v
Acoustical properties of liquids

1 Introduction

The studies of magnetic chains are based upon the exis-
tence of beautiful experimental results for neutron scat-
tering in quasi one-dimensional (1D) systems [1–7], and
on detailed theoretical work using a variety of meth-
ods [8–10]. However, even the extensive investigations that
followed these studies could not overcome complicated
situations such as the differences between physical sys-
tems and theoretical models for dynamics and thermody-
namics of spin structures [11–21]. Further investigations
of these spin systems also included dipole–dipole inter-
actions, as well as biquadratic interactions for the rigid
chains [22–24], and spin–lattice interactions for the com-
pressible chains [25].

Most of the aforementioned studies show that the part
of the symmetry-breaking potential introduced into the
system through the Zeeman energy contribution, always
leads to sine-Gordon (sG) picture. This approximation has
given a qualitative description of solitary excitations in
magnetic chains and has stimulated widespread interest
in the nonlinear dynamics of quasi 1D magnets.

However, the appealing simplified picture that emerges
is not sufficient for a quantitative description. Although
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the macroscopic quantities yield very clear evidence for
the contribution of solitons to the spin dynamics, it is also
clear that it is still necessary to include fundamental cor-
rections to the simple sG solitons in order to understand
more accurately some experiments. For instance the criti-
cal field that has been previously established theoretically
has not yet been experimentally verified [26].

Besides well known materials such as CsNiF3 which
are modeled with a sG equation, and Fe/Cr(211) which
is modeled by a sG equation with an additional harmonic
on the sinusoidal potential [27,28], it is possible to find in
most of these types of material, the presence of some addi-
tional interactions that can lead to the frustration of some
internal degrees of freedom, and therefore the determina-
tion of their ground state appears to be very far from triv-
ial. From a physical viewpoint, it is important to under-
stand the origin of these nonlinear harmonic generations
in terms of the microscopic structure and the influence
of various interactions. It is important to stress that sev-
eral effects such as magnetostriction may also lead to new
shapes of the domain wall, that are consequences of new
harmonic generation in the substrate potential [29,30].

The crucial question for understanding the dynam-
ics of these materials is: what are the essential terms
that should be included or modified in the Hamiltonian
to describe more accurately the nonlinear dynamics of
magnetic systems subject to harmonic generations?
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In this respect, the dependence between the proper-
ties of real magnetic chains and the number of harmon-
ics in the potential prompted us to undertake investiga-
tion of magnetic systems with higher order harmonics.
From a mathematical viewpoint, this generalization can
be achieved by considering the resulting potential as a
standard Taylor expansion with respect to the in-plane
angle ϕ, which contains cosine terms, leading then to
a deformable potential as in the case of nonlinear lat-
tices [31,32].

Recently, Kofané [33] put forward a novel model in
which the Hamiltonian was characterized by the nearest
neighbor exchange energy, the single ion anisotropy and a
parameterized Zeeman energy. However, this parameter-
ized model Hamiltonian was limited since the derivation
of the nonlinear equation for the spin dynamics needs a
certain constraint i.e. (S = 1).

The purpose of the present paper is to provide possi-
ble answers to the questions posed above related to the
proposed model for the real magnetic systems. We want
to show that it is possible to increase the range of the
reduced magnetic field for the stability of solitary waves,
and also set up new features of spin excitations through
investigation of their dynamics.

The material of this paper is organized as follows. In
Section 2, we present the model Hamiltonian and derive
the discrete equations of motion. The implicit kinks are
found as exact solutions in the continuum limit. Section 3
is devoted to numerical studies of the effect of the shape
parameter on moving solitary excitations in such a dis-
crete magnetic chain. It is shown that in the presence
of deformability effects, the sG description is even more
likely to provide a very poor description. This is firstly be-
cause, due to the existence of the other soliton branches,
the shape parameter can lead to a large abrupt velocity
change which cannot account for the sG picture. Secondly,
for different values of the shape parameter, the number of
non-sG solitary structures will be enhanced or reduced
with the appearance of new structures. In Section 4, we
give a summary and conclusion.

2 The model

To introduce the model in which a relationship between
magnetic domain walls and solitons, as special solutions,
can be established, let us consider a magnetic chain with
the following Hamiltonian

H = −J
∑

i

�Si
�Si+1 + A

∑

i

(
Sz

i

)2

+ gµB (1 − ηBx)2 BxS
∑

i

(
1 − S−1Sx

i

)

1 + (ηBx)2+2ηBxS−1Sx
i

·
(2.1)

Here, the first term represents the ferromagnetic (J > 0)
or antiferromagnetic (J < 0) Heisenberg exchange inter-
action between neighboring spin vectors. The quantity S

represents the modulus of the atomic spin (S =
∣∣∣�Si

∣∣∣ in

units of �). The index x on the magnetic field component
means that the magnetic field is applied along the X axis.
The Z axis is the direction of the spin chain and the easy
plane is the (XY) plane. The second term in the Hamil-
tonian (2.1) is the single ion uniaxial anisotropy energy
due to the crystalline field. It constrains the spin to lie in
a plane perpendicular to the chain axis. A is the uniaxial
crystal-field anisotropy parameter. The third term is the
parameterized Zeeman energy.

We note that the Hamiltonian of any magnet, ferro or
antiferro, classical or quantum, on a rigid or deformable
lattice, should be time reversal invariant. In particular,
this implies that the Hamiltonian cannot contain odd pow-
ers of the spin variables or operators. The Zeeman term,
for instance, is linear in Sx but does not break time re-
versal. This is normal because the presence of an external
magnetic field changes the sign with time reversal. In the
Hamiltonian (2.1), the principal modification that appears
is related to the Zeeman term accounting for the deforma-
bility effect. The time reversal symmetry is still unlikely to
be broken because the shape parameter used here may de-
pend on the applied magnetic field. Therefore, the whole
Hamiltonian would be time reversal invariant.

In equation (2.1), η is a parameter that has the inverse
dimension of a magnetic field. It depends on the physi-
cal properties of the material and also on temperature or
pressure. Notice that in all the remaining text the expres-
sion ηBx, which appears in the last term of the Hamil-
tonian (2.1) is replaced by the parameter r, i.e. r = ηBx

which is the shape parameter that varies in the range –
1 < r < 1 [31,32].

In our model Hamiltonian, the subsequent higher har-
monics that would be generated in a single spin potential
of the system are due to a complex combination of inter-
actions of various intrinsic properties of the material and
the applied magnetic field that cannot be derived from
Heisenberg’s exchange interaction [34]. Three important
limits of the Hamiltonian(2.1) can be obtained for r that
tends to 1, –1 and 0, leading to a Hamiltonian of a spin
system for an Ising-like or a paramagnetic structure, fer-
romagnetic behavior and a planar Heisenberg structure,
respectively.

In classical notation, we represent the spin field
in spherical coordinates �Si (z, t) = S (cos(θi) cos(ϕi),
cos(θi) sin(ϕi), sin(θi)), with angles ranging between 0 ≤
θi ≤ π and 0 ≤ ϕi ≤ 2π. Then, using the undamped
Bloch equations for the spin vectors [33], and after some
mathematical combinations, the equations of motions are

�

JS

dϕi

dt
cos(θi) = sin (θi)

[
cos(θi+1) cos(ϕi+1 − ϕi)

+cos(θi−1) cos(ϕi−1−ϕi)
]
−cos(θi) [sin (θi+1) + sin(θi−1)]

+
2AS

J
cos(θi) sin(θi)

+
gµBBx

JS2

(
1 − r2

)2 sin(θi) cos(ϕi)

[1 + r2 + 2r cos(θi) cos(ϕi)]
2 (2.2a)
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�

JS

dθi

dt
= cos(θi+1) sin(ϕi+1 − ϕi)

+ cos(θi−1) sin(ϕi−1 − ϕi)

− gµBBx

JS2

(
1 − r2

)2 sin(ϕi)

[1 + r2 + 2r cos(θi) cos(ϕi)]
2 . (2.2b)

The set of coupled nonlinear differential-difference equa-
tions (2.2a) and (2.2b), define the collective excitations for
the in-plane angle and the out-of-plane angle of a discrete
lattice. Although, the model under study is discrete, it is
important to derive the continuum limit because it helps
in establishing the analytical calculation of the implicit
solutions that will be used as initial conditions for our
numerical computation. Using the classical approxima-
tion at sufficiently low temperature, i.e. neglecting quan-
tum effects [35], in the continuum limit (where the length
scale for rotation JS

gµBBx
� 1), equations (2.2a) and (2.2b)

can be reduced to nonlinear partial differential equations.
Next, we introduce the dimensionless quantities a0 (where
is the lattice spacing), τ = (2AS

�
)t and b = gµBBx

2AS . At the
order if ∂

∂ζ′
∂
∂τ ∼ ε(ε � 1), θ ∼ ε, and b ∼ ε2 [36], equa-

tions (2.2a) and (2.2b) then reduce to

ϕζζ − ϕττ − b
(
1 − r2

)2 sin ϕ

[1 + r2 + 2r cosϕ]2
= 0 (2.3a)

θ = ϕτ (2.3b)

where b and r are the two constants needed to specify the
time evolution of the spin excitations. Equation (2.3a) is
the deformable sG equation. The corresponding Hamilto-
nian density (with the energy measured in units of JS2

and length units of the lattice spacing) is given by

H =
1
2

{(
∂ϕ

∂ζ

)2

+
1
c2

(
∂ϕ

∂τ

)2
}

+ VRP (ϕ) (2.4a)

where VRP is the Remoissenet - Peyrard potential given
by

VRP (ϕ, r) = (1 − r)2
1 − cosϕ

1 + r2 + 2r cosϕ
, |r| < 1.

(2.4b)
Depending on the shape parameter r, this potential can
have various shapes as depicted in Figure 1. Therefore,
equation (2.3a) can have solutions in the form of large
amplitude travelling waves (kinks), low amplitude linear
modes (linear spin wave or magnon) and breathers. This
equation also shows that in this approximation the soli-
tary excitations are composed of two families of implicit
kink solution with the velocity v given in terms of moving
coordinates ξ = ζ−vτ which are travelling wave rotations
of the spin trough 2π within the easy-plane. The implicit

Fig. 1. Schematic plot of the Remoissenet - Peyrard potential
for A: r = −0.9; B: r = −0.5; C: r = 0 D: r = 0.5; E: r = 0.9.

solutions for the in-plane component are [31,32]
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with the rest energy

E(1)
s = 8A′√bα

(
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)− 1
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[(
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α

) 1
2
]

for −1 < r ≤ 0 (2.5b)

and
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And the rest energy is

E(2)
s = 8A′√bα

(
1 − α2

)− 1
2 tanh−1

[(
1 − α2

α

) 1
2
]

for 0 ≤ r < 1 (2.5d)

and,

α =
1 − |r|
1 + |r| ; d(1) = d0α, d(2) = d0/α;

d0 = 1/
√

b; A′ =
�

2

2Aa0
and γ =

(
1 − v2

)− 1
2 . (2.5e)
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Under this assumption the out-of-plane component, which
remains defined by equation (2.3b) for both of the implicit
in-plane solutions, indicates that the spin tilting out-of
easy plane will be proportional to the kink translation ve-
locity. The in-plane wave rotation component occurs over
a characteristic length d(j) (j = 1, 2) which is the “pseudo
kink width”, determined by the applied field, for veloci-

ties v that are expressed here in units of C0 =
√

2AJSa2
0

�2 ,
and the shape parameter r. The antikink solutions are
obtained by replacing ϕ by (2π − ϕ). For r = 0, equa-
tions (2.5a, 2.5c) reduce to the usual sG kink. When r
tends to 1, d(2) tends to infinity. On the other hand,
when r decreases and tends to –1, d(1) tends to zero.
Thus, the kink extension is not only determined by the
characteristic length scale d0 , but also by the curvature
of the minima. As mentioned above, the deformable sG
equation has also the law-amplitude periodic wave solu-
tions of the form φ = φ0 cos(qζ − ωqτ) corresponding
to small oscillations of the spin vector around one of the
ground states which form a continuous spectrum charac-
terized by the dispersion relation

ω2
q = ω2

r + q2 , ωr =
(

1 − r

1 + r

)√
b (2.6)

where ωr is a characteristic frequency of oscillation of an
isolated spin vector at the bottom of the substrate poten-
tial well (φ = 2πn, n integer) and q is the wave vector. The
magnitude of φ0 is required to be infinitesimally small, es-
pecially in the case where r tends to 1 (see potential with
a sharp bottom of Fig. 1E).

3 Numerical calculations

3.1 Computational details

Since the validity of the continuum limit and other ap-
proximations, can only be tested by comparison with nu-
merical calculations, we are left with the central question
of the physical problem described by the discrete non-
integrable system of equations (2.2a) and (2.2b) for our
magnetic chain, namely: are the non- linear implicit soli-
ton solutions stable and if so, what is their signature on
the dynamics of the magnetic chain for different values
of the shape parameter r? For this purpose, our numer-
ical calculations have been achieved on a cyclic chain of
160 spins with periodic boundary conditions and an off-
set of 2π at chain ends and also with energy conservation
imposed. Typically at time t = 0, initial profiles are ob-
tained by using the implicit solutions (see Eq. (2.5)). For
the numerical implementation of these implicit solutions,
instead of the Newton-Raphson scheme (which is just an
approximation), we used a different method, which is de-
scribed below and which turned out to represent a 2π-kink
soliton very accurately when r = 0. For this purpose, once
the velocity v is chosen, next, we define a set of discrete
values of the in-plane excitation component such that the

interpolation points of lines are given by

ϕi =
2πi

N
(3.1)

with i ∈ [0, .., N ] and N = 160 is the spin-lattice size.
Using this definition of ϕi in the discrete version of equa-
tions (2.5a) and (2.5c) given by:

ξi = F1(ϕi) for − 1 < r ≤ 0 (3.2a)

and
ξi = F2(ϕi) for 0 ≤ r < 1. (3.2b)

Here, F1 and F2, represent the discrete version of the right
hand side of equation (2.5a) and equation (2.5c), respec-
tively. Equation (3.1), equation (3.2a) and equation (3.2b)
allow then to recover for each amplitude of ϕi, its corre-
sponding localization on the lattice site ξi, for different
values of the shape parameter. At this step, we shall reit-
erate that the out-of-plane component can be defined by
the following relationship with the in-plane component:

θi =
dϕi

dt
= −v

dϕi

dξi
. (3.3a)

Therefore, it can be numerically extracted through the
following relation

θi = −v
ϕi+1 − ϕi−1

(ξi+1 − ξi−1)
(3.3b)

where v represents the reduced velocity of the solitary
excitation in the spin lattice.

In the present simulation, we are able to test the va-
lidity of the implicit solutions through their propagation
in the discrete chain for different values of the shape pa-
rameter r and the reduced magnetic field b. To this end,
in our approach, the characterization of both their energy
and velocity and the relationship between them are es-
sential in the numerical results, for the first step of such
a theoretical study. Such an investigation can serve as a
possible basis for the analysis of the energy-momentum
curves given by neutron scattering experiments. Needless
to say in this discrete model, the parameters d(1) and d(2)

that appear in the solution (2.5a) and (2.5c) and defined
in equation (2.5e), have the dimensions of length and seem
to play the same role as the kink width in the sG system,
but this is not exactly the case here. Indeed in the limit
r → +1, d(2) diverges as (1 − |r|)−1 while the spatial
extension becomes infinite; in this case d(2) can be con-
sidered as a pseudokink width that will control the effects
of discreteness. The parameter d(2) depends not only on
the shape parameter r but also on the reduced magnetic
field b. So, when this implicit soliton width is large com-
pared to the lattice spacing d(2) � a0, the continuum limit
is attained in this model and the spin dynamics are mainly
dominated by the ballistic behavior. But for negative val-
ues of r in the limitr → −1, d(1) tends to zero but the
spatial extension of the kink tends to a finite limit. In this
case, the continuum limit is no longer controlled by the
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parameter d(1). The continuum limit can be attained only
if the reduced applied magnetic field is less than b = 0.3,
with initial velocity in the range 0.02 ≤ uin/C0 ≤ 0.5 i.e.
all elements of the ratio γ

d(1) need to be taken into account.
In this case, the dynamics may display ballistic as well as
diffusive behaviors. Let us remember that, in most of the
simulations we have chosen the physical parameters so
that we avoid a strong discreteness effect. To this end, the
implicit static soliton width was kept in a range of 15 to
25 spins during the complete run. We shall address a com-
plete study of discreteness effects and continuum limits in
future work.

Let us introduce, as an example, the following set of
parameters of the CsNiF3 structure, namely [13]: J =
23.6 K, A = 4.5 K and S = 1. As far as equations
(2.2a) and (2.2b) are concerned with the description of
the subsequent time evolution of the in-plane and the
out-of-plane excitation components, the energy of our dis-
crete magnetic chain is given in a dimensionless form in
terms of the in-plane and out-of-plane angle components
by E =

∑
i

Ei, with

Ei = 1 − cos(θi) cos(θi+1) cos(ϕi+1−ϕi)
− sin(θi) sin(θi+1) + 1 − cos(θi) cos(θi−1) cos(ϕi−1−ϕi)

− sin(θi) sin(θi−1) + a2
sin2(θi)

2

+ a3(1 − r)2
1 − cos(θi) cos(ϕi)

(1 + r2, +2r cos(θi) cos(ϕi))
(3.4)

where a2 = 2A
J , a3 = gµBBx

JS , and the index (i) stands
for the lattice sites. With a suitable choice of the time
step (typically 0.05 in units (JS)−1), this energy, which
is a conserved quantity, was frequently monitored in our
simulations to ensure an accuracy of about 0.01% for the
fourth order Runge–Kutta scheme.

3.2 Numerical results

Let us first present Figure 2 where we plotted the maximal
out-of plane spin deviation component as a function of the
shape parameter r, while the initial condition is that of the
kink soliton of the sG equation for the curve A. The curve
B corresponds to the case of the implicit soliton solution
as the initial conditions in our numerical scheme. In order
to store the data of these curves, we computed, for each
value of the shape parameter, the values of the out-of-
plane component, and we kept only their maximal values
(θmax) for the reduced magnetic field in the range 0 ≤
b ≤ 0.61. These curves show that for the entire range of
the shape parameter, the out-of-plane spin tilting is always
greater in the case of curve A than that of curve B. Since a
system with higher values of the out-of- plane component
is more prone to instability, this is thus the proof that
the nonlinear excitations are more subject to instability if
the initial conditions are the conventional sG-kink solitons
than when the implicit solution of the continuum limit
are chosen as initial conditions. For this reason, we have

Fig. 2. Plot of the maximum out-of plane angle deviation θm

from the easy plane as a function of the shape parameter r. A:
— Solid line corresponds to the case of sine-Gordon soliton as
initial condition. B: - - - Dashed line corresponds to the case
of the implicit soliton as initial condition.

chosen the implicit solitons as initial conditions for all the
remaining results.

The discrete-lattice time evolution requires specifica-
tion of r, b and the initial velocity uin/C0. A series of runs
were performed holding the shape parameter r fixed but
varying the reduced magnetic field b and the velocity of
the input implicit solitary excitation (and therefore the
energy) uin/C0. In order to measure the effective velocity
of the topological solitary wave of kink type, we started
at the beginning of the simulation by identifying at each
time step, the centre of the solitary excitation as the point
at which the amplitude ϕ = π. Then, the oscillations in
the solitary excitation velocity were averaged numerically
over 1500 units of time during which the solitary wave at
low magnetic field and high initial speed (uin/C0 = 0.7)
could translate approximately 70 unit cells in the course
of calculation, and this averaged velocity was identified as
the solitary excitation’s propagation velocity.

When r = 0, and mainly in the range −0.2 ≤ r ≤ 0.2,
we found that if the implicit solutions (which in this case
should reduce to that of the sG approximation) were valid,
then the propagation velocity of the soliton would be that
of the initial condition uin/C0. We found as Wysin, Bishop
and Kumar (WBK) [37,38] that, on the contrary, the soli-
tary wave’s motion is different at arbitrarily low non-zero
velocity and the difference increases with increasing mag-
netic field. This point is illustrated in Figure 3a where the
effective velocity of the solitary excitation is plotted as a
function of the input velocity of the initial condition. Our
numerical scheme also enables us to obtain the same result
as WBK for the energy velocity relationship, where signif-
icant deviation from the sG branch [37] is observed as the
magnetic field increases. To illustrate this point, we have
plotted in Figure 3b the dispersion relation in terms of the
energy as a function of the effective velocity of the solitary
excitations for different values of the magnetic field, in the
case of r = 0.

From Figures 3a and 3b, it is clear that the results
obtained are qualitatively the same as those obtained pre-
viously by WBK in reference [38] while investigating the
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(a)

(b)

Fig. 3. (a) Plot of the numerical computation of the mean
soliton velocity u/C0 as a function of the implicit deformable
sine-Gordon kink initial conditionuin/C0 when r=0 for some
values of the reduced magnetic field b: A: 0.05; B: 0.15; C:
0.25; D: 0.35. (b) Plot of the energy ∆E/E0 velocity relation
for the soliton-like excitation in a ferromagnetic chain when the
deformability effects are absent i.e. r = 0. The curves in (b)
that take the following values: A, 0 (full curve); B, 0.15 (broken
curve); C, 0.25 (chain curve); D, 0.35 (dot-dot-dot dash curve).

dynamics of a rigid ferromagnetic chain. The only slight
difference is related to the small values of the effective ve-
locity of the solitary excitations. This is normal because
the implicit solution used here is not a good solution for
the system when r = 0. Therefore, in absence of deforma-
bility effects in the spin chain, we obtained the same re-
sults as those of previous studies [37,38], which were con-
cerned with the dynamics of a rigid magnetic chain. It is
worth mentioning that these results could be predictable
from the result obtained in the case of the Hamiltonian
limit when r=0, but it is also useful to derive them with
the same approach that we use for r �= 0 in order to vali-
date our numerical method.

When r �= 0, the most interesting behavior is obtained
for r < − 0.2 and r > 0.2 and the general features of the
deformability effect on the dynamics of a spin chain are
illustrated in most of the figures presented below. We shall
first focus our attention on the case where r < − 0.2, and
mainly for lower values of r. One of the main effects of
the deformability in the system appears in the energy and
the effective velocity curves of the solitary excitation, re-

(a)

(b)

Fig. 4. (a): Plot of the numerical computation of the mean
resulting soliton velocity u/C0 as a function of the implicit
deformable sine-Gordon kink initial condition uin/C0 when r =
−0.8 for some values of the reduced magnetic field b: A: 0.05;
B: 0.22; C: 0.35; D: 0.5. (b) Energy against mean resulting
soliton velocity, when r = −0.8, for the following values of the
reduced magnetic fields b. A: 0.05; B: 0.25; C: 0.35; D: 0.5.

spectively. Figures 4a and 4b, obtained for r = −0.8, show
the plot of the effective solitary wave velocity against the
implicit initial conditions velocity and the total energy
against the effective propagating solitary excitation veloc-
ity, respectively. In Figure 4a, the curve A corresponds
to the case of a solitary excitation propagating when the
magnetic field is approximately zero. Increasing the mag-
netic field, in curve B and C we observe as in curve A an
increasing of the effective velocity up to a maximal value
after which it starts decreasing. For these curves, the main
effect of the deformability occurs in the lowest values of
the solitary excitation speeds compared to those of the ini-
tial conditions. The effective velocity here is almost lower
than in the case of r = 0 corresponding to the rigid mag-
netic chain [37]. This can be understood by the fact that
for this value of deformability parameter, and mainly in
the range −1 < r ≤ −0.6, the resulting kink narrows
and its profile is very sharp, thus it faces discreteness ef-
fects of the spin lattice that tend to lower its velocity.
In the case of curve D, we only plotted a few points, be-
cause the effective velocity starts by decreasing down to a
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Fig. 5. The same method is applied here as in Figure 5 to
obtain the velocity of the resulting solitary excitation u/C0 as
a function of uin/C0 when r = 0.9, for the following values of
the reduced magnetic field b; A: 0; B: 0.2; C: 0.3; D: 0.5.

certain minimal value. Further increasing the initial ve-
locity leads to an instability of the excitation. This is
explained by the fact that, for this largest value of the
reduced magnetic field (i.e. b > 0.3), when the initial
condition is introduced in the chain with a certain ini-
tial momentum, the resulting wave is suddenly subject
to an interplay between its momentum and an opposite
force induced by the complex combination of the magnetic
field and the intrinsic properties of the material. Conse-
quently, in this range of deformability parameter and mag-
netic field, with a higher range of the initial velocity, the
solitary excitation suffers strong discreteness effect that
finally destroys its shape. In Figure 4b, while looking at
the case of curve A and curve B, we can see that even if
quantitatively the deformability affects the values of the
energy, qualitatively the system displays behavior close to
the result obtained in the case of r = 0 in Figure 3b in
this parameter range. The implicit initial condition turns
out to produce excitations in the chain whose energy dis-
plays less than three regimes as the reduced magnetic field
increases up to a value of b = 0.25. Increasing the value
of the reduced magnetic field further led the system to
unstable behavior in the energy and velocity relationship.
Thus the difference matches qualitatively and quantita-
tively the case of r = 0. From these figures it is also clear
that, due to the lowest values of the computed velocities
compared to those of the initial conditions, the implicit
2π-kink solitary excitations are not valid solutions of the
system.

For r > 0.2, we can see that the implicit soliton solu-
tions are not valid. This can be seen in the shape of the
average soliton velocity obtained in Figure 5. In this fig-
ure, the effective soliton velocity plotted as a function of
the velocity of the initial condition displays non-equal val-
ues for r = 0.9. But, for lower values of the magnetic field
and lower speed (u/C0 ≤ 0.2), the implicit solitons are
still valid. For positive values of the shape parameter r,
one of the most important features of the deformability
effect is illustrated in Figure 6, where the energy is dis-
played in terms of the ratio ∆E/E0 as a function of the
effective velocity of the solitary excitation both for the

Fig. 6. Plot of the energy ∆E
E0

velocity relation for the soliton
–like excitation in a ferromagnetic chain, when the system is
subject to deformability effects for r = 0.9 and the reduced
magnetic field b = 0.3. The curve with dashed line corresponds
to the case of the same value of the reduced magnetic field
but without deformability effect (r = 0 and b = 0.3). Here
∆E = E(u) − E0 where E0 = E(u = 0) is the rest energy.

case of a planar Heisenberg spin chain (r = 0), and a spin
chain with deformability effect (see the curves with A2,
B2...). Here, and in other cases, ∆E = E(u) − E0 where
E0 = E(u = 0) is the rest energy of the soliton. The first
difference is related to the concavity of the two curves
which are opposite. Therefore, another feature of the de-
formability effect is that it transforms a forward motion of
the solitary excitation into a backward motion. The sec-
ond difference comes from the fact that, although both of
the curves have been obtained for the same value of the
applied magnetic field (i.e. b = 0.3), the second curve dis-
plays four excitations branches for r = 0.9, while the first
curve which is not concerned with deformability effects
displays only three excitation branches. Therefore, in this
case, the deformability also increases the number of exci-
tation branches. Similar curves symmetric from those pre-
sented in this figure can be obtained by changing the sign
of the velocity of the implicit initial condition. A numer-
ical result which appears surprising at first glance when
looking at Figure 6, is that, from point A2 to B2, the ve-
locity against energy, instead of a single valued behavior,
displays coupled energy behaviour. From point A2 to B2,
which corresponds to the first branch, the nonlinear exci-
tations, when initiated, suddenly split into a bi-kink that
starts a transparent collision process, while propagating
in the opposite direction to that of the initial condition.
This transparent collision process induces an energy cost
that progressively decreases its initial value. This strange
behavior comes from a combination of the deformability
effect and the magnetic field that act to constrain the mag-
netic excitation to propagate in the opposite direction.
Next, from point B2 to point C2 that corresponds to the
second branch, the nonlinear excitation is of a kink type
that still loses energy while propagating in the positive
direction. Hence, the velocity may then display bi-valued
energy behavior in this velocity range. In the third branch
(III) that begins from point C2 and ends at point D2, the
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soliton energy increases with an increase of its velocity.
The energy-velocity relationship along this branch is sim-
ilar to the one given by the deformable sG(dsG) equation;
therefore this branch can be called the dsG-soliton branch.
In the branches I, II, and IV significant deviations from
dsG soliton behavior can be observed. When one follows
the curve from point A2 to E2, the magnitude of the out-
of-plane component deviation θ increases from 0 to π/2. It
is therefore enough to cause an instability in the in-plane
excitation. Beyond point D2, the localized pulse type ex-
citations which can propagate develop a shock front. Due
to the slow decreasing of the effective velocity, new exci-
tations that may behave as a nanopteron-like wave [39]
may also propagate. This can be easily understood, when
we make a comparison with the results of WBK [37,38]
for a rigid magnetic chain, or Roche and Peyrard for a
magnetic chain subject to impurity [36].

From Figure 7 that illustrates the magnetic field and
the solitary excitation’s maximal velocity relationship for
six cases (A: r = −0.6; B: r = −0.3; C: r = 0; D: r = 0.3;
E: r = 0.6; F: r = 0.9), it is clear that the range of the
reduced magnetic field (0 ≤ b ≤ 0.61) for the magnetic
chain under deformability effects in which stable non lin-
ear excitations can propagate is larger than that of the
rigid magnetic chain (0 ≤ b < 0.33) [12,13,26]. As we can
see in this range of the reduced magnetic field when r �= 0,
the nonlinear excitation propagates with a non-zero max-
imal velocity and for positive values of the parameter r,
the magnetic field and the solitary excitation’s maximum
velocity present a semi circular-like behaviour. The non-
zero velocity here can be understood as in reference [39]
in terms of the absence of a standing bound state in the
magnetic chain for each value of the magnetic field con-
sidered here, when the solitary excitation reaches with its
maximal speed. When r = 0, we recover in Figure 7c the
Magyari-Thomas [12,16] shape and the critical magnetic
field close to b = 1/3, which is consistent with their result
B(0) − B(u) ≈ u2/3. The absence of non-static criti-
cal magnetic field for the magnetic excitations of a spin
chain under deformability effect may also justify the rea-
son why until now the critical magnetic field, although
theoretically well established for the rigid magnetic chain,
has not yet been found experimentally.

In Figure 8, we plot the energy curve as a function of
the magnetic field relationship for five cases (A: r = −0.9;
B: r = −0.6; C: r = 0; D: r = 0.6; E: r = 0.9). From this
figure we notice that, while most of these curves display
an expected behavior i.e. the energy curve decreases with
increasing the magnetic field, the lowest values attained
on this energy curve seem to be nonlinear as the shape
parameter increases. This is the proof that in most cases,
the solitary excitations retain their shape and do not split
into other excitations, even if they do not display equiva-
lent minimum energy. This is due to the different nature
of the nonlinear excitations that the system displays when
one varies the shape parameter. The most surprising result
here is that of curve A, which corresponds to the case of
r = −0.9. Here, instead of showing a decreasing behaviour,
the energy curve displays an increasing one as the mag-

Fig. 7. Maximum mean propagation velocity of the resulting
soliton against magnetic field for some values of the deforma-
bility parameter A: r = −0.9; B: r = −0.6; C: r = 0; D:
r = 0.6; E: r = 0.9.

Fig. 8. Energy ∆E/E0 as a function of the reduced magnetic
field b, for some values of the shape parameter A: r = −0.9; B:
r = −0.6; C: r = 0; D: r = 0.6; E: r = 0.9. Here ∆E = E(u)−
E0 with E0 = E(u = 0). Only the case of curve C (r = 0)
is typical, all the other curves have been fitted by multiplying
ordinate values by 0.01. their greatest values are due to the
division in the definition of the energy in equation (3.1).

netic field increases. This can be understood in the sense
that, for this value of the shape parameter and mainly in
the range −1 < r ≤ −0.9, the magnetic chain structure
changes drastically. This may be the signature of a ferro-
magnetic chain with non linear excitation energy that is
non-conservative. This can be seen as a special feature of
the intrinsic damping induced by the deformability effects
on the excitations that move in the system within this pa-
rameter range. Another feature of the deformability effect
is that the energy decreases down to non-vanishing values,
which is not the same as in the curve C where deforma-
bility is absent. We have illustrated other features of the
deformability effects in Figure 9 where the time evolution
of the density of energy curve on the lattice sites is rep-
resented. We notice that, under deformability effects, the
spin dynamics display stochastic behavior for r = −0.9
and b = 0.1 (curve A), that manifests itself as a combina-
tion of an intermittency with a repetition of the trajectory
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Fig. 9. Energy density along the chain versus time for three
values of the shape parameter A: r = −0.9. and b = 0.1; B:
r = 0.9 and b = 0.3; C: r = 0.6 and b = 0.1.

of the excitation while moving; and also ballistic behavior
for the case of r = 0.9, b = 0.3 (curve B), and diffusive
behavior for r = 0.6 and b = 0.1 (curve C). Needless to
say, these chaotic and diffusive behaviors are due to the
fact that the initial conditions used are not the solution of
the discrete system. Therefore, when these implicit initial
conditions are used, they induced many other excitation
modes in the system that do not lead to a ballistic be-
havior of the solitary excitation. This is different from the
result obtained in the case of a rigid magnetic chain (i.e.
r = 0), for the same values of magnetic field and initial
velocity.

4 Summary and conclusion

To summarize, we have introduced phenomenologically
nonlinear harmonic generation in the substrate potential
through deformability effects, in a model of a one dimen-
sional Heisenberg spin chain where the Zeeman energy
is parameterized. Taking into account this deformability
effect has led us to a substrate potential in the system
for which the energy lost of the solitary excitation is in-
trinsically considered. Although little is known about the
details of this phenomenon in a magnetic chain, we believe
that, such effects must be considered to obtain reasonable
agreement between experiment and theory.

With this model, we have tested the validity of the
implicit solitary solution by numerical computation in a
classical easy-plane ferromagnetic chain with a variable
substrate potential, for the shape parameter in the range
–1 < r < 1.

For –1 < r < 0.2, as the shape parameter r is de-
creasing, we observe in certain cases the possibility of an
excitation with a velocity that displays three different val-
ues of the energy. We also notice that, depending of the
range of the reduced magnetic field b, the number of soli-
ton branches may be reduced or enhanced. The system
seems to display a stochastic behavior for decreasing val-
ues of the shape parameter.

For the range −0.2 ≤ r ≤ 0.2, and different values
of the magnetic fields, our results are similar to those of
WBK [37,38]. This means that the implicit solitary solu-
tions are valid for lowest branches. The system also dis-
plays large easy-plane deviation, temporal oscillation and
shock wave formation.

When r > 0.2, we observe that even if there appears to
be a difference between these curves and the case of r = 0,
it remains the fact that, there is a difference between the
velocity at which we launch the solitary excitation and the
observed velocity at any arbitrary low non-zero velocity.
This difference increases with increasing magnetic field.
We also notice the presence of a non-standing bound state
when the nonlinear excitation evolves with its maximal
speed. The energy velocity diagram enables the deduction
of the presence of four nonlinear excitation branches in
which one is new for the particular case of r = 0.9 and
b = 0.3. The new excitation branch is progressively dom-
inated by nanopteron wave formation [39]. From our re-
sults, it is clear that the range of the magnetic field for sta-
ble non-linear excitations propagating in a magnetic chain
under a deformability effect is greater than that of the
rigid chain that was inconsistent with experiment [26]. The
reason for this enlargement can be understood by the fact
that previous theoretical models were too simple to repre-
sent real specimens. Very often, if a more realistic model is
used, the results become complex enough to have a clear
physical interpretation. Therefore, neglecting key effects
may lead to misleading theoretical predictions. The ideal
system is the one in which the leading physical features
are well represented by a simple theoretical model. Thus,
one should take care of the range of the shape parameter
r chosen when the dynamics and also thermodynamics of
such a magnetic chain are studied. Therefore, the conven-
tional sG based on a phenomenological description for the
1D system should be profoundly affected. However, before
assessing the consequences of the shape parameter on a 1D
system, it is necessary to study the implicit kink-antikink
scattering and also the implicit kink-kink like collision,
along with an extensive investigation of their impact on
the discreteness effects, as well as their competition with
the impurity effect in a disordered system. Due also to the
multiple propagating behaviors displayed by the findings,
and the abrupt change on the energy for a certain range of
the shape parameter for a given magnetic field, a study of
the induction of a phase transition by implicit solitons in
such a 1D magnetic system is encouraged. We shall report
our results for these investigations in future work.
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